Alice Springs Mulga and Ti Tree East Ti Tree, NT

Terrestrial Ecosystem Research Network (TERN): Australian and New Zealand Flux Research and Monitoring Network (OzFlux) Australian Supersite Network (ASN) National Centre for Groundwater Research and Training (NCGRT)

Terrestrial Ecohydrology Research Group (TERG) School of the Environment (SoE)

Personnel

Prof Derek Eamus; director TERG, leader Alice Mulga SuperSite (AMSS)

Current postdocs

Dr James Cleverly, deputy leader AMSS Dr Rachel Nolan (plant hydraulics) Dr Nadia Santini (stem anatomy)

Recent postdocs

Dr Chao Chen (ecohydrological modelling) Dr Randol Villalobos-Vega (sapflux) Dr Sepideh Zolfagher (plant hydraulics)

PhD students

Rizwana Rumman (stable isotopes and leaf anatomy) Tonantzin Tarin Terrazas (eddy covariance and leaf-level fluxes)

Technical officer Ralph Faux

Alice Mulga SuperSite Mulga, Corymbia open hummock savanna, River Redgum

https://www.google.com/maps/views/profile/112909826384451762314?gl=us&pv=2&tab=1

Activities Ecophysiology

Hydrologic niche separation and ecosystem resilience (ARC discovery project, Eamus)
hydraulic safety margins
xylem vulnerability to cavitation
stem relative water content
pre-dawn and midday Ψ_x and Ψ₁
leaf-level g_s, A and E
δ¹³C (leaves); δD and δ¹⁸O (stems, soil, groundwater and precipitation)
sapflux (NCGRT)

Atkins/Bloomfield plant thermal tolerance

August 2014

Activities Measurements and collections

Ecology

DBH, basal diameter & height {ASM, Woodforde River} litterfall collections {ASM} leaf area index {ASM, TTE, WR} basinwide leaf isotope samples maintain phenological cameras {ASM, TTE} acoustic monitoring {ASM, TTE} avifauna survey (volunteers?)

Airborne laser scanner (LiDAR) flown on 19 September 2014

Data communications RS232 modem {TTE, WR}; ethernet modem {ASM} Telstra 3G to Ti Tree tower via +21 dB gain Yagi aerial 10 Hz: binary transfer, same format as on logger and cf card 1 min.: slow sensor averages, sums (except soil measurements); TOA 30 min.: TOA static IP: Maxon virtual private network, single-client licence

Activities TTE soil moisture calibrations

 $\Theta_{g} \Theta_{v} \rho_{b}$

t₀: 0.02 m³ m⁻³ (before) Θ_{v-max}: 0.15 m³ m⁻³

porosity: 0.35 m³ m⁻³ (0–10 cm); 0.25 m³ m⁻³ (50–100 cm)

Ponding to saturate surface 1-minute soil moisture content Sequential soil sample collections

15 cm intact cores (slide hammer)

ASM & TTE Mulga, Corymbia open savanna—hummock grass

(a) Mulga woodland

(b) Corymbia open savanna

Green shading: Mulga

Open circles: Corymbia trees

Triangles: towers

Empty space:

Upper panel (ASM): C₃ and C₄ grasses in understorey, conditional on rain Lower panel (TTE): C₄ grasses

Both sites:

- Flat with negligible runoff (some local re-distribution)
- Drainage below root zone negligible except in extreme years

Woody vegetation cover: Mulga: ASM 74%; TTE 6% *Corymbia*: ASM < 0.1%; TTE 0.4%

ASM & TTE Carbon and water budgets

UNIVERSITY OF TECHNOLOGY SYDNEY

TTE

Dominant carbon emission mechanism: photo-degradation

- Carbon emissions due to degradation of plant tissue in the: absence of moisture and the presence of heat and light
- Presumes large productivity during previous wet years (2010–2011)
- Loss of fuel load: restricts fire risk to a few years following periods of high productivity
- Increased rainfall amounts and variability due to recent climate change results in: high productivity during wet years, and subsequently large emissions due to fire or photo-degradation

EVI Responses to rainfall

Local precipitation **Patch point (SILO)**

Table 1. Rainfall statistics.		La	rge vr ⁻¹	varia	bility i	n rain	fall
Year	Precipitation		y .	,			
1000 2012	$(mm yr^{-1})$	Fo	ur o	of the	five dı	riest ye	ears
1900-2012	234 221 [*]					•	
1900–1909 1970–2012	231 314 [*]	Fo	our o	of the	five w	ettest	yea
Five wettest				town			-: f
1974	955	LO	ng-	term	increa	se in ra	aint
2010	833		_				
2000	743	Co	ontir	nued l	arge v	variabi	lity
1975	676						
1904	555	Pa	n ev	/apor	ation a	anti-co	orre
Five driest				•			
1928	25		1000				
1961	70	_1	000		_		SILO
1964	76	, Y	800		\mathbf{i}		
1965	77	E	600		(\cdot, \cdot)		
1994	97	n (n	600		ંગ્	µ́ ►́ ►́	-
*median		itatio	400			•	.
		recip	200				
		С.	0				
			Ĵ	1999	2001	2003	20

in the long term (25–955 mm

occurred before 1970

rs were after 1970

all amount

since 1999

lated to rainfall

ECHNOLOGY SYDNEY

Climate drivers IOD, ENSO, SAM

- IOD: strength of monsoon depression
 ENSO: connected to IOD via Walker circulation
 SAM: location of landfall via the Mascarene high
- wPC1 = -0.93[Niño3.4] + 0.24[SAMI] -0.28[DMI] (Wavelet PCA)
- Correlation between climate drivers and precipitation identified by wavelet coherence (square correlation)
- Significant coherence at 2–4 month and annual time scales, 1999–2012
- Fluctuations between dry and wet years maintained by sudden phase shift in 2009 (dry) and effects of warming IO (wet)

Publications 2013

Cleverly J, Boulain N, Villalobos-Vega R, Grant N, Faux R, Wood C, Cook PG, Yu Q, Leigh A, Eamus D. 2013. Dynamics of component carbon fluxes in a semi-arid Acacia woodland, central Australia. Journal of Geophysical Research: Biogeosciences 118:1168–1185. DOI: 10.1002/jgrg.20101.

Cleverly J, Chen C, Boulain N, Villalobos-Vega R, Faux R, Grant N, Yu Q, Eamus D. 2013. Aerodynamic resistance and Penman-Monteith evapotranspiration over a seasonally two-layered canopy in semiarid central Australia. Journal of Hydrometeorology 14:1562-1570. DOI: 10.1175/jhmd-13-080.1.

Eamus D, Cleverly J, Boulain N, Grant N, Faux R, Villalobos-Vega R. 2013. Carbon and water fluxes in an arid-zone Acacia savanna woodland: An analyses of seasonal patterns and responses to rainfall events. Agricultural and Forest Meteorology 182–183:225-238. DOI: 10.1016/j. agrformet.2013.04.020.

Ma X, Huete A, Yu Q, Coupe NR, Davies K, Broich M, Ratana P, Beringer J, Hutley LB, Cleverly J, Boulain N, Eamus D. 2013. Spatial patterns and temporal dynamics in savanna vegetation phenology across the North Australian Tropical Transect. Remote Sensing of Environment 139:97-115. DOI: 10.1016/j.rse.2013.07.030.

Publications 2014

Chen C, Eamus D, Cleverly J, Boulain N, Cook P, Zhang L, Cheng L, Yu Q. 2014. Modelling vegetation water-use and groundwater recharge as affected by climate variability in an arid-zone Acacia savanna woodland. Journal of Hydrology Accepted August 2014.

Cleverly J, Luo Q, Restrepo Coupe N, Chen C, Rumman R, Li L, van Gorsel E, Kljun N, Faux R, Wyczesany T, Yu Q, Huete A, Eamus D. In Review. Productivity and ecohydrology of contrasting semi-arid ecosystems following recent changes in precipitation patterns. Global Change Biology.

Donohue RJ, Hume IH, Roderick ML, McVicar TR, Beringer J, Hutley LB, Gallant JC, Austin JM, van Gorsel E, Cleverly JR, Meyer WS, Arndt SK. 2014. Evaluation of the remote-sensing-based DIFFUSE model for estimating photosynthesis of vegetation. Remote Sensing of Environment Accepted 3 September 2014.

Ma X, Huete A, Yu Q, Restrepo-Coupe N, Berin<mark>ger J, Hu</mark>tley LB, Kanniah KD, Cleverly J, Eamus D. 2014. Parameterization of an ecosystem light-use-efficiency model for predicting savanna GPP using MODIS EVI. Remote Sensing of Environment 154:253-271. DOI: 10.1016/j.rse.2014.08.025.

Shi H, Li L, Eamus D, Cleverly J, Huete A, Yu Q, Beringer J, van gorsel E, Hutley LB. 2014. Intrinsic climate dependency of ecosystem light and water-use-efficiencies across Australian biomes. Environmental Research Letters Accepted 27 August 2014.

A better world, faster with water for all.

BUTS

Help UTS win the Google Impact Challenge and create a better world.

vote today at

impactchallenge.withgoogle.com

VOTING CLOSES 13 OCT